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Abstract. The finite size behavior of the susceptibility, Binder cumulant and some even moments of the
magnetization of a fully finite O(n) cubic system of size L are analyzed and the corresponding scaling
functions are derived within a field-theoretic ε-expansion scheme under periodic boundary conditions. We
suppose a van der Waals type long-range interaction falling apart with the distance r as r−(d+σ), where
2 < σ < 4, which does not change the short-range critical exponents of the system. Despite that the
system belongs to the short-range universality class it is shown that above the bulk critical temperature
Tc the finite-size corrections decay in a power-in-L, and not in an exponential-in-L law, which is normally
believed to be a characteristic feature for such systems.

PACS. 64.60.-i General studies of phase transitions – 64.60.Fr Equilibrium properties near critical points,
critical exponents – 75.40.-s Critical-point effects, specific heats, short-range order

1 Introduction

It is well known that the critical properties of a given bulk
system depend on a small number of parameters like its
dimensionality, the symmetry of the order parameter and
the long-rangeness of the interaction in the system under
consideration. If the Fourier transform of the interaction
v(q) has a small |q| expansion of the form

v(q) = v0 + v2q
2 + vσq

σ + w(q), (1.1)

with w(q)/qσ → 0 when q → 0 and σ ≥ 2, then the ther-
modynamic critical behavior of the system is supposed to
be like that of an entirely short-ranged system [1]. In the
opposite case, when σ < 2 the critical behavior differs
essentially [1,2] from that of the short-range system and
is characterized by critical exponents that do depend on
σ (below the corresponding upper critical dimension that
is du = 2σ in this case) [1]. On the basis of the above
bulk picture one normally supposes that in the finite sys-
tems the same general property will take place: if σ ≥ 2
the finite-size behavior will be that of the corresponding
short-ranged finite-size systems [3], characterized by ex-
ponentially fast decay of the finite-size dependence of the
thermodynamic quantities (at least when the critical re-
gion of the system is leaved in the direction towards higher
temperatures; the low-temperature behavior depends on
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additional features like existence, or not, of a spin-wave
excitations – Goldstone bosons). It turns out that the last
is not true, at least for 2 < σ < 4, and an evidence about
that within the framework of the mean spherical model
has been reported in [4]. For example, it has been demon-
strated that the finite-size dependence of the susceptibil-
ity in such a system is given by (2 < d < 4, 2 < σ < 4,
d+ σ < 6)

χ(t, h;L) = Lγ/νY (x1, x2, bL
2−σ−η), (1.2)

or, equivalently,

χ(t, h;L) = Lγ/ν
[
Y sr(x1, x2) + bL2−σ−ηY lr(x1, x2)

]
,

(1.3)

where x1 = c1tL
1/ν , x2 = c2hL

∆/ν , and Y , Y sr and Y lr

are universal functions (recall that η = 0 for the short-
range spherical model). The quantities c1, c2 and b are
nonuniversal constants, t = (T − Tc)/Tc is the reduced
temperature and h is a properly scaled external magnetic
field. In the high-temperature, unordered phase, where
tL1/ν →∞, one observes [4] that the long-range portion of
the interaction between spin degrees of freedom gives rise
to contributions of the order of bL−(d+σ). In other words
the subleading long-range part of the interaction gives rise
to a dominant finite-size dependence in this regime which
is governed by a power-in-L law. More explicitly, one
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obtains Y sr(x1, 0) ' Y sr+ x−γ1 +O (exp(−const. xν1)), while

Y lr(x1, 0) ' Y lr1 x−2γ+σν
1 + Y lr2 x−2γ−dν

1 , (1.4)

when x1 →∞ [4]. This asymptotic is supported from the
existing both exact and perturbative results for models
with leading long-range interaction [5–8]. Note that (1.4)
implies for the temperature dependence of this corrections
that

χ(t, h;L)− χ(t, h;∞) ∼ t−dν−2γL−(d+σ), tL1/ν →∞.
(1.5)

In addition, let us note that the standard finite-size
scaling [9–13] is usually formulated in terms of only one
reference length, namely the bulk correlation length ξ. The
main statements of the theory are that:

i) The only relevant variable in terms of which the
properties of the finite system depend in the neighbour-
hood of the bulk critical temperature Tc is L/ξ.

ii) The rounding of the phase transition in a given finite
system sets in when L/ξ = O(1).

The tacit assumption is that all other reference lengths
will lead only to corrections towards the above picture. As
it is clear from equations (1.2–1.5) this is not the case
in systems with subleading long-range interactions. This
is an important class of systems. It contains all nonpolar
fluids where the dominant interaction is supposed to be of
van der Waals type, i.e. of the type given by equation (1.1)
with d = σ = 3.

In fact a similar problem has been recently stud-
ied by Chen and Dohm [14–16]. They considered a
field-theoretical model with short-range interactions and
wavelength-dependent cutoff of fluctuations Λ. They ob-
serve corrections to the infinite system thermodynamic
behavior going as an inverse power law in L that do de-
pend also on LΛ and not only on L/ξ. As it has been clar-
ified in [4] the power law contributions to the finite size
corrections result there from the interplay of two features
of that model. The first is a sharp cutoff of fluctuations
in momentum space and the second is the removal of all
the terms beyond the q2 one in (1.1), which has the effect
of introducing an effective interaction that falls off as a
power law in the separation between degrees of freedom.
This power-law interaction leads immediately to power-
law contributions to the finite size corrections.

Theoretically the critical properties of finite-size sys-
tems have been studied on the examples of exactly solv-
able models, by renormalization group calculations – both
in the field-theoretical framework and in the real space,
by conformal invariance and by numerical (mainly Monte
Carlo) simulations. An essential part of these investiga-
tions is well described in a series of reviews [11–13,17,18].

The O(n) models are the most often used examples
on the basis of which one studies the scaling properties of
finite-size systems. The best investigated cases are those
of the n = 1 (Ising model) and the limit n = ∞, which
includes the spherical model [12,13]. The last model is
especially suitable for the investigation of its finite-size
properties since it is exactly solvable for any d even in

the presence of an external magnetic field. For n 6= 1,∞
there are no exact results and the preferable analytical
method for the derivation of the properties of the corre-
sponding models (like XY , i.e. n = 2, and Heisenberg,
i.e. n = 3) is that one of the renormalization group the-
ory. An important amount of information for such systems
is in addition derived by numerical simulations, normally
via Monte Carlo methods. As a rule the investigations
are concentrated on interactions of finite range. As exam-
ples of long-range interactions in addition to the equiva-
lent neighbors the case of power-law decaying interactions
have been considered. In the case of σ < 2 analytically
only the finite-size scaling properties of the n = ∞ limit
are well established. For finite n a limited number of re-
cent numerical results [19–22], as well as few theoretical
works [7,8,22,23] are available. The case of σ < 2 has been
investigated in references [7,8,22] (under periodic bound-
ary conditions). It has been found that, as for the bulk
systems [1,24], the critical behavior depends on the small
parameter ε = 2σ − d, where 2σ corresponds to the up-
per critical dimension in such systems [1,24]. The results
are obtained in powers of

√
ε. The quantities of interest

have been the shift of the critical coupling, the suscepti-
bility and the Binder cumulant B at the critical temper-
ature Tc [22,7] and above it [7,8] as a function of ε. It
has been found that the numerical results obtained in [22]
for the Ising model do not agree with the predicted (up
to one loop order) behavior of B [7,22]. One is tempting
to criticize the numerics, despite the authors claim that
the method applied there suffice to account for the inter-
action of any spin with all others including with its own
sequence of images under periodic boundary conditions
(i.e. no truncation of the interaction has been enforced).
In [21] one even reports disagreement with the well estab-
lished theoretically fact that the critical exponents of the
system do not depend on σ if σ > 2. Possible source of
this disagreement are the finite-size corrections due to the
long-range part of the interaction that cloud the short-
range ones and that can be numerically essential for prac-
tically realizable sizes of the system.

In the present article we will consider the case of
long-range power-law decaying interaction characterised
by σ > 2 in its Fourier transform. As it was already men-
tioned above the recently obtained results for n =∞ limit
indicates that the well-spread opinion that such an in-
teraction is uninteresting for the critical behavior of the
finite system [3] is not fully correct. Here, following the
method used in [7] we will generalize the results available
for n =∞ to the case of finite n. We will use ε-expansion
technique up to one loop order in the interaction coupling.
We will investigate the behavior of the Binder cumulant,
susceptibility, and some more general even moments of the
order parameter.

The plan of the article is as follows. In Section 2 we
review, briefly, the ϕ4-model with long-range interaction
and discuss its bulk critical behavior. Section 3 is devoted
to the explanation of the methods used here to achieve
our analysis. We end the section with the computation of
some thermodynamic quantities of interest. In Section 4
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we discuss our results briefly. In the remainder of the paper
we present details of the calculations of some formula used
throughout the paper.

2 General considerations

In the vicinity of its critical point the Heisenberg model,
with short as well as long-range interaction decaying in
a power-law, is equivalent to the d-dimensional O(n)-
symmetric model

βH{ϕ} =
1
2

∫
V

ddx
[
(∇ϕ)2 + b

(
∇σ/2ϕ

)2

+ r0ϕ
2 +

1
2
u0ϕ

4

]
,

(2.1)

where ϕ is a short-hand notation for the space dependent
n-component field ϕ(x), r0 = r0c+ t0 (t0 ∝ T −Tc) and u0

are model constants. V is the volume of the system and
we assumed kB = 1. We note that the second term in the
model denotes qσ|ϕ(q)|2 in the momentum representation
where the parameter σ > 0 (with σ/2 being noninteger)
takes into account the contribution of the long-range in-
teractions in the system. In (2.1) β is the inverse tempera-
ture. Here we will consider periodic boundary conditions.
This means

ϕ(x) = L−d
∑
q

ϕ(q) exp (iq · x) , (2.2)

where q is a discrete vector with components qi = 2πni/L
(ni = 0,±1,±2, · · · , i = 1, · · · , d) and a cutoff Λ ∼ a−1

(a is the lattice spacing). In this paper we are interested
in the continuum limit, i.e. a → 0. As long as the sys-
tem is finite we have to take into account the following
assumptions L/a→∞, ξ →∞ while ξ/L is finite.

The Hamiltonian (2.1) is, of course, well known in the
literature. First, it has been used to investigate the critical
behaviour of systems with reduced space dimensionality
exhibiting phase transitions [1]. Let us recall that in such
systems a phase transition can occur only if the interac-
tion is long-ranged enough. The critical behaviour of the
model depends strongly upon the nature of the interac-
tion controlled by the parameter σ. With σ ≤ 2 it has
been used for detailed investigation of the critical behav-
ior of O(n) models including questions like the σ, d and
n dependence of the critical exponents and critical ampli-
tude ratios, as well as for calculation of their values, and
for determining of the universal scaling functions of both
the infinite, as well as of finite systems. In this case the
critical exponents of the system are σ dependent. By in-
creasing σ, a crossover from long-range critical behavior
to short-range one takes place. The crossover happens at
a point, which can be determined from general consider-
ations (see for example page 71 of reference [25]). This
‘critical’ value of σ is given by σ = 2 − η, where η is the
Fisher exponent for the short range model. When σ > 2
one usually considers the model as equivalent to σ = 2

case and omits the b
(
∇σ/2ϕ

)2
term in the Hamiltonian,

since it was believed that this term does not contribute to
the critical behavior of the system. Indeed, in this case,
the critical exponents do not depend on the parameter σ.
As it was already mentioned, such a procedure can lead to
incorrect results for finite-size systems. This was demon-
strated in [4] on the example of n = ∞ model. In the
current article we will demonstrate that the same remains
true also for a finite n.

The investigation of the bulk critical behaviour of the
model (2.1) for the case σ > 2 is achieved by considering
the long range interaction as a perturbation to the short
range one [26–28]. This allows the adaptation of the the-
ory of Feynman diagrams to systems with subleading long
range interaction. As a consequence the upper critical di-
mension remains unchanged by that interaction and the
critical exponents are those of the model with pure short
range interaction. The interested reader can find more de-
tails in references [26–28].

Before starting to explore the scaling properties of the
field theoretical model (2.1) confined to a finite geometry
and under periodic boundary conditions, we will give a
brief heuristic derivation of the finite scaling hypothesis,
based on the idea of renormalization group. Here we are
interested in the continuum limit when the lattice spacing
completely disappears. Using dimensional regularization
the integrations over wave vectors of the fluctuations are
convergent and are evaluated without cutoff. When some
dimensions of the system are finite the integrals over the
corresponding momenta are transformed into sums. Since
the lattice spacing is taken to be zero, the limits of the
sums still extend to infinity.

From general renormalization group considerations a
multiplicatively renormalizable observable X , the suscep-
tibility for example, will scale like

X [t, g, b, µ, L] = ζ(ρ)X [t(ρ), g(ρ), b(ρ), µρ, L] , (2.3)

where t = (T − Tc)/Tc is the reduced temperature, g is
a dimensionless coupling constant and L is the finite-size
scale. The length scale µ is introduced in order to control
the renormalization procedure. Here b(ρ) is an irrelevant
from RG point of view variable which mimics the influence
of the subleading long range interaction on the critical
behavior of the system. Equation (2.3) is obtained using
the assumption that the size L of the system does not
renormalize [29].

It is known (see, e.g., [29]) that in the bulk limit,
when g(ρ) approaches the stable short-range fixed point
g∗ of the theory, we have

t(ρ) ≈ tρ1/ν−2, ζ(ρ) ≈ ργx/ν−px and b(ρ) ≈ bργb−2,
(2.4)

where γx and ν are the bulk critical exponents measuring
the divergence of the observable X and the correlation
length, respectively, in the vicinity of the critical point
and ρ is a scaling parameter. The exponent px is the di-
mension of the observable X , defined in equation (2.3).
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The critical exponent γb = 2 − η − σ [30]. Using dimen-
sional analysis together with equation (2.3) one gets

X [t, g, b, µ, L] =

(µρ)pxζ(ρ)X
[
t(ρ)(ρµ)2, g(ρ), b(ρ)(ρµ)2, 1, L/µρ

]
. (2.5)

Choosing the arbitrary parameter ρ = L/µ, we obtain our
final result for the scaling form of an observable X in the
case, when there is subleading long-range interaction in
the finite system

X [t, g, b, µ, L] = Lγx/νf
(
tL1/ν , bL2−σ−η

)
. (2.6)

Here the function f(x) is a universal function of its argu-
ments (after choosing in a proper way their scale factors).
Note that equation (2.6) is the analog, for finite system, of
the result obtained in [30]. In the remainder of this paper
we will verify the scaling relation (2.6) in the framework
of model (2.1).

3 Finite-size analysis

The method we will adopt here is widely used in the ex-
ploration of the scaling properties of finite systems in the
vicinity of their critical point. It is based on the idea of
using a mode expansion, i.e. one treats the zero mode of
the order parameter, which is equivalent to the magne-
tization, separately from the higher modes (q 6= 0). The
nonzero modes are treated perturbatively in combination
with the loop expansion. The finite modes are traced over
to yield an effective Hamiltonian for the zero mode:

exp [−Heff ] = Trφq 6=0 exp [−H (φq=0, φq 6=0)] . (3.1)

After performing this operation one ends up with an ef-
fective Hamiltonian of the form (see Appendix A)

Heff =
1
2
Ld
(
Rφ2 +

1
2
Uφ4

)
, (3.2)

where the effective coupling constants are given by

R = r0 + (n+ 2)u0L
−d
∑
q 6=0

1
r0 + q2 + b|q|σ , (3.3a)

U = u0 − (n+ 8)u2
0L
−d
∑
q 6=0

1
(r0 + q2 + b|q|σ)2 · (3.3b)

In the remainder of this paper we will compute, to the
lowest order in ε = 4− d, the effective coupling constants,
with the initial coupling constants renormalized as in their
bulk critical theory, since it has been shown that to the
one loop order the renormalization of the finite theory is
a consequence of the renormalization of the bulk one [29].

Simple dimensional analysis shows that the effec-
tive coupling constants should have the following scaling

forms:

R = Lη−2fR
(
tL1/ν , bL2−σ−η

)
and

U = Ld−4+2ηfU
(
tL1/ν , bL2−σ−η

)
,

(3.4)

for t & 0, where fR and fU are scaling functions which
are properties of the bulk critical point. They are analytic
at t = 0. This is a consequence of the fact that only finite
modes have been integrated out.

After evaluating the explicit forms of the functions fR
and fU , we can deduce results for the different thermo-
dynamic quantities and the expressions of their respective
scaling functions.

In order to investigate the large scale physics of the
finite system, one has to calculate thermal averages with
respect to the new effective Hamiltonian defined in (3.2).
They are related to the thermodynamic functions of the
system under consideration. The averages of the field φ
are defined by

M2p =
〈(
φ2
)p〉

=
∫

dnφ φ2p exp (−Heff)∫
dnφ exp (−Heff)

· (3.5)

With the aid of the appropriate rescaling Φ =
(
ULd

)1/4
φ,

we can transform the effective Hamiltonian into

Heff =
1
2
zΦ2 +

1
4
Φ4, (3.6)

where the ‘scaling variable’ z = RLd/2U−1/2 is an impor-
tant quantity which has been used in many occasions in
the investigations of finite-size scaling in critical systems
(see for example references [31,32]). Explicit expressions
for some thermodynamic averages of the type (3.5) as well
as their asymptotics are presented in Appendix B.

With the effective Hamiltonian (3.6), we obtain the
general scaling relation

M2p=L−p(d−2+η)L
p(d−4+2η)/2

Up/2
f2p

(
RL2−ηL

(d−4+2η)/2

U1/2

)
(3.7)

for the momenta of the field φ. Having in mind equa-
tions (3.4), we can write down equation (3.7) in the fol-
lowing scaling form

M2p = L−p(d−2+η)F2p(tL1/ν , bL2−σ−η), (3.8)

in agreement with the finite-size scaling predictions
of (2.6). In equation (3.8), the functions F2p(x) are uni-
versal.

All the measurable thermodynamic quantities can be
obtained from the momenta M2p. For example the sus-
ceptibility is obtained from

χ =
1
n

∫
V

ddx 〈ϕ(x)ϕ(0)〉 = L2−ηF2(tL1/ν , bL2−σ−η).

(3.9)
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Another quantity of importance for numerical analysis of
the finite-size scaling theory is the Binder’s cumulant de-
fined by

B = 1− 1
3
M4

M2
2

· (3.10)

In the remainder of this section we concentrate on the
computation of the coupling constants R and U of the
effective Hamiltonian (3.2) for the system with sublead-
ing long-range interaction decaying with the distance as
a power law. As a consequence we will deduce results for
the characteristic variable z = RU−1/2L2−η−ε/2, the sus-
ceptibility χ and the Binder’s cumulant B.

3.1 Computation of the effective coupling constants

The finite-size corrections to the coupling constant r0 in
the mode expansion reads

R = r0 + (n+ 2)u0L
−d
∑
q 6=0

1
r0 + q2 + b|q|σ · (3.11)

One of the delicate problems in the finite size-scaling
theory is the analysis of the sums appearing in the math-
ematical equations, which forms the basis of the investi-
gation of the scaling as well as thermodynamic properties
of the system under consideration. In our case this means
that we have to find a way to evaluate the sum appearing
in the right hand side of (3.11). In the absence of the long-
range interaction term (b = 0) several methods have been
developed in order to investigate this sum. When b 6= 0,
i.e. in the presence of the non analytic term in q, a step
towards the solution of this problem has been made in
reference [4]. It is based upon the idea that in the long
distance physics one retains only those contribution to
the behavior of the quantities involved that are associated
with the effects of long-range fluctuations. In other words
we will consider the leading behavior that is due to the
small q contributions. Expanding in q, we obtain

R = r0 + (n+ 2)u0SL(d, r0, 2)

− (n+ 2)u0b

(
1 + r0

∂

∂r0

)
SL(d, r0, σ), (3.12)

where

SL(d, r, σ) =
1
Ld

∑
q 6=0

|q|σ−2

r + q2
· (3.13)

In order to evaluate the finite-size corrections to the bulk
system we have to analyze the finite-size behavior of the
function SL(d, r, σ). This is achieved by making use of the
identity

q2p

r + q2
=
∫ ∞

0

exp[−(q2 + r)t]t−pγ∗(−p,−rt)dt, p < 1,

(3.14)

where γ∗(a, x) is a single-valued analytic function of a and
x, possessing no finite singularities [33]

γ∗(a, x) = e−x
∞∑
n=0

xn

Γ (a+ n+ 1)

=
1

Γ (a)

∞∑
n=0

(−x)n

(a+ n)n!
, |x| <∞. (3.15)

Identity (3.14) can be proven by integrating by parts
the corresponding series representations of γ∗. Similar
identity has been used in [23] for the investigation of the
finite-size behavior of O(n) model system with a crossover
from leading long-range interaction to the short-range
case, i.e. σ → 2−.

With the help of this identity one obtains (0 ≤ p < 1)

SL(d, r, 2(p+ 1)) =
1

(2π)d

∫
dq

q2p

r + q2

+ L2−d−2pIpscaling(rL2, d), (3.16)

where

Ipscaling(x, d) = (4π)p−1

∫ ∞
0

e−x
u

4π2 u−pγ∗(−p,− x

4π2
u)

×
[
Ad(u)−

(π
u

)d/2
− 1
]

du, (3.17)

with

A(u) =
∞∑

k=−∞
e−k

2u =
√
π

u
A
(
π2

u

)
·

Finally for the effective coupling constant R we obtain

R = r0 +
(n+ 2)u0

(2π)d

(∫
dq

r0 + q2
− b

∫
dq

|q|σ
(r0 + q2)2

)
+(n+ 2)u0L

2−dI0
scaling

(
r0L

2, d
)

−(n+ 2)u0b

(
1 + r0

∂

∂r0

)
L4−d−σI

σ−2
2

scaling

(
r0L

2, d
)
.

(3.18)

Now, we renormalize the theory by introducing the
field theoretical renormalization constants, i.e. the scale
field amplitude Z, the coupling constant renormaliza-
tion Zg, and Zt – renormalizing the ϕ2 insertions in the
critical theory. This allows to replace the model bare con-
stants r0 and u0 in the last equation by their renormalized
counterparts trough:

t = ZZ−1
t (r0 − r0c) and g = µ−εZ2Z−1

g u0S
−1
d ,

(3.19)

where µ is a renormalization scale, which will be set
equal to 1, Sd = 1

2 (4π)d/2Γ (d/2) is a phase space factor
and [27,28]

Z = 1 +O(g2), (3.20a)

Zt = 1 +
n+ 2
ε

g +O(g2), (3.20b)

Zg = 1 +
n+ 8
ε

g +O(g2), (3.20c)
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are the usual renormalization amplitudes to one-loop or-
der. According to references [27,28], the amplitudes given
in (3.20) are the only relevant renormalization parame-
ters necessary for the investigation of the bulk critical
behaviour of the model (2.1) in the case of subleading
long-range interaction, i.e. σ > 2. Up to the precision in
which we are working we will see that these factors are
indeed sufficient to renormalize the theory. Definitely, the
question what will happen in higher orders is very im-
portant and interesting but it is out of the scope of the
current investigation. Another potential difficulty comes
from the fact that for σ = 3, the contributions propor-
tional to (k2)3 will be of the same order as that produced
by (k3)2, then it might happen that more sophisticated
approach will be needed to account for higher-order con-
tributions. Once again - this question is out of the scope
of the current article.

Finally, using dimensional regularization, at the fixed
point g∗ = ε

n+8 +O(ε2) of the theory, in the case d+σ < 6
we obtain

RL2 = y

(
1 +

ε

2
n+ 2
n+ 8

ln y
)

+
ε

4
n+ 2
n+ 8

bL2−σ (2 + σ)π
sin
(
π σ2
) yσ/2

+ε
n+ 2
n+ 8

S4I
0
scaling (y, 4)

−εS4
n+ 2
n+ 8

bL2−σ
(

1 + y
∂

∂y

)
I
σ−2

2
scaling (y, 4) , (3.21)

where we have introduced the scaling variable y = tL1/ν

with ν−1 = 2− n+2
n+8ε+O

(
ε2
)
. Equation (3.21) shows that

the effective coupling constant R has the scaling form pre-
dicted in equation (3.4). At this order, the exponent η = 0,
and verifying the powers of η in this expression requires
a higher order computation. In the particular case b = 0
from equation (3.21) we recover the result of reference [31].

When the system under consideration is confined to a
finite geometry, instead of the coupling constant u0, we
have the shifted effective coupling constant U given by:

U = u0 − (n+ 8)u2
0L
−d
∑
q 6=0

1
(r0 + q2 + b|q|σ)2 · (3.22)

Remark that the summand in the right hand side can be
expressed as the derivative of the summand in the right
hand side of equation (3.11) with respect to r0. Conse-
quently the result for the effective coupling constant U
can be derived easily from that of R. Using that observa-
tion one gets

ULε =
ε

n+ 8
S4

(
1 +

ε

2
(1 + ln y)

)
+

ε2

n+ 8
bL2−σ

8
S4
σπ(σ + 2)
sin
(
π σ2
) y σ2−1

+
ε2

n+ 8
S2

4

∂

∂y
I0
scaling (y, 4)− ε2

n+ 8
S2

4bL
2−σ

×
(

2
∂

∂y
+

∂2

∂y2

)
I
σ−2

2
scaling (y, 4) , (3.23)

at the fixed point, in agreement with the scaling relations
of equation (3.4). Equation (3.23) generalizes the results

of reference [31] to the case when subleading long range
interaction is taken into account.

Note that the effective coupling constant U has a finite
limit at the critical point, i.e. in the limit t → 0. Indeed,
as the reduced temperature vanishes it is possible to use
the expansion

I0
scaling (y, 4) = I0

scaling (0, 4) +
S−1

4

2
y (C − ln y) +O(y2),

(3.24)

where

C =
∫ ∞

0

du
u

[
exp

(
− u

4π2

)
− u2

π2
A4(u) +

u2

π2

]
= 2.2064...

(3.25)

After substitution of (3.24) in (3.23) the terms propor-
tional to log y cancel, which shows that the coupling con-
stant U is finite at t = 0. Whence, one gets (for y → 0)

ULε =
ε

n+ 8
S4

(
1 +

ε

2
C
)

− ε2

n+ 8
S2

4bL
2−σ

(
2
∂

∂y
+

∂2

∂y2

)
I
σ−2

2
scaling (y, 4)

∣∣∣∣
y=0

,

(3.26)

showing that it is possible to evaluate U at the critical
point, i.e. it is safe now to set y = 0.

3.2 Some thermodynamic quantities

3.2.1 Binder’s cumulant

In this subsection we are interested in the evaluation of
the Binder’s cumulant ratio, which plays a fundamental
role in the investigation of the finite-size scaling theory by
numerical means. Here we will give only the analytical
expressions. Unfortunately there are no numerical sim-
ulation which can approve or not the results we obtain
throughout this paper.

Close to the critical point, i.e. in the region tL1/ν � 1,
we obtain for the Binder’s cumulant ratio

B = 1− n

12
Γ 2
[

1
4n
]

Γ 2
[

1
4 (n+ 2)

] {1− z
(
Γ
[

1
4 (n+ 6)

]
Γ
[

1
3 (n+ 4)

]
+
Γ
[

1
4 (n+ 2)

]
Γ
[

1
4n
] − 2

Γ
[

1
4 (n+ 4)

]
Γ
[

1
4 (n+ 2)

])+ z2

×
(
Γ
[

1
4 (n+6)

]
Γ
[

1
4 (n+2)

]
Γ
[

1
4 (n+4)

]
Γ
[

1
4n
] +3

Γ 2
[

1
4 (n+4)

]
Γ 2
[

1
4 (n+ 2)

]−n−1

)

+O
(
z3
)}
· (3.27)

The cumulant B is a function of the variable z, which is
itself a function of the scaling variable y. So, a knowledge
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of a final expression for the function z, which appears in
the all thermodynamic quatities, is enough to deduce the
value of the Binder’s Cumulant. At the fixed point, we
obtain (for y � 1)

z∗(y) ≡ RL2

√
ULε

∣∣∣∣
fixedpoint

=
√
n+ 8
εS4

×
[
y − y ε

4

(
1− n− 4

n+ 8
ln y
)

+
3n
n+ 8

ε

16
(2 + σ)π
sin
(
π dσ
) yσ/2

+
n+ 2
n+ 8

εS4

(
I0
scaling (y, 4)

−bL2−σ
(

1 + y
∂

∂y

)
I
σ−2

2
scaling (y, 4)

)
− 1

2
εS4y

(
∂

∂y
I0
scaling (y, 4)

−bL2−σ
(

2
∂

∂y
+

∂2

∂y2

)
I
σ−2

2
scaling (y, 4)

)]
. (3.28)

This expression shows that the Binder’s Cumulant B has
the required scaling form. At the critical point, i.e. at
y = 0, we get

z∗(0) = −
√
ε

4
√

2
π

n+ 2√
n+ 8

×
[
ln 2 + bL2−σ(2π)σ−2(1− 4

σ
2−1)ζ

(
1− σ

2

)
ζ
(

2− σ

2

)]
·

(3.29)

This result is obtained with the help of the formula [34]∫ ∞
0

duu1−ν
[
A4(u)− 1−

(π
u

)2
]

=

8(1− 41−ν)π2(1−ν)Γ (ν)ζ(ν − 1)ζ(ν), ν 6= 0, 2. (3.30)

Equation (3.29) is a generalization of the result of [31]
obtained for the model with pure short range forces. Note
that the form of the expansion in terms

√
ε is kept but

the coefficient is altered and now it is a function the pa-
rameter σ controlling the long-range interaction.

Now we turn our attention to the behavior of Binder’s
cumulant ratio in the limit z � 1. In this case we obtain

B = 1− 1
3

(
1 +

2
n

)[
1− 2

z2
+O

(
1
z4

)]
, (3.31)

wherefrom one has Bn(∞) = 2
3 (1− 1/n). This result cor-

responds to a n-dimensional Gaussian distribution for n
independent components Φ1, · · · , Φn of the vector vari-
able Φ. For such a distribution it is easy to show that
M2 = n〈Φ2

i 〉, and M4 = n〈Φ4
i 〉+ n(n− 1)〈Φ2

i 〉2, where Φi
is any of the components of the vector Φ, and 〈· · · 〉 means
average with respect to one-component Gaussian distri-
bution G1. Having in mind that for G1 〈Φ4

i 〉 = 3〈Φ2
i 〉2, one

directly obtains that Bn = 2
3 (1−1/n), in a full agreement

with the above renormalization group result. Obviously,
all limiting values lie in the interval from B = 0 (Ising
model, n = 1) to B = 2/3 (spherical model, n =∞).

3.2.2 Magnetic susceptibility

The system we consider here is confined to a fully finite
geometry. In this case it cannot exhibit a true phase tran-
sition, i.e. the thermodynamic functions are not singular.
In the vicinity of the critical temperature, which corre-
sponds to the region y � 1, the susceptibility behaves
like

χ =
2
n

L2

√
ULε

Γ
[

1
4 (n+ 2)

]
Γ
[
n
4

]
×
{

1− z
(
n

4
Γ
[
n
4

]
Γ
[

1
4 (n+ 2)

] − Γ
[

1
4 (n+ 2)

]
Γ
[
n
4

] )

+z2

(
1− n

4
+
Γ 2
[

1
4 (n+ 2)

]
Γ 2
[
n
4

] )
+O(z3)

}
· (3.32)

The susceptibility in this case is analytic at t = 0. This is
a consequence of the analyticity of the effective coupling
constants R and U . In order to get the final result for
the susceptibility one has to replace R and U by their re-
spective expressions. After performing this we find that χ
has an expansion in powers of

√
ε. This results is valid as

long as we are concerned by the case d+ σ < 6. Once we
have d + σ = 6, a lnL will appear in the expression of
the susceptibility. The source of this lnL is coming from
equation (C3) for the coupling constant U at the critical
point (see Appendix C). This is an extension to finite n,
by means of perturbation method, of the result obtained
in reference [4] for the spherical model.

In the region corresponding to y � 1, we have

χ =
1
R

[
1− n+ 2

z2
+O

(
1
z3

)]
· (3.33)

Substituting the effective coupling constants R and U by
their respective expressions from equations (3.21, 3.23),
and using the asymptotic expansions of Ipscaling derived
in [4], we get

χ=χ∞

[
1−εn+2

n+8
S4

y
bL2−σ

(
C4, σ−22

y−2− y
σ/2

4S4

σ+2
sinπσ/2

)]
,

(3.34)

where

Cd,p = − (1 + p)41+p

πd/2
Γ (1 + p+ d/2)

Γ (−p)
∑
k6=0

1
kd+2(p+1)

·

(3.35)

Expression (3.34) for the susceptibility shows that it has
the form given by the scaling hypothesis (3.9). It demon-
strates also that in this regime the critical properties of
the system are dominated by the bulk critical behavior,
with finite-size corrections in powers of L.

4 Discussion

In the present article we have investigated the finite-size
scaling behavior of a fully finite O(n) system with periodic
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boundary conditions and in the presence of a long-range
interaction that does not alter the short-range exponents
of critical its critical behavior. The small |q| expansion of
the Fourier transform of the interaction v(q) is supposed
to be of the form

v(q) = v0 + v2q
2 + vσq

σ + w(q), (4.1)

with w(q)/qσ → 0, when q → 0 and 2 < σ < 4. In the
real d-dimensional space one can think about interactions
decaying as r−(d+σ). This is an important class of inter-
actions that include also van der Waals type interactions.

For such a system, in the present article we have
demonstrated that all the even moments of the magne-
tizationM2p, including the susceptibility, can be written
in the form

M2p = L−p(d−2+η)F2p(tL1/ν , bL2−σ−η), (4.2)

(see Eqs. (B4, 3.21, 3.23, 3.32, 3.34). Note that one has two
scaling variables needed in order to describe in a proper
way the finite size behavior of these quantities. A special
attention has been paid to two important quantities: the
Binder’s Cumulant and the susceptibility.

In the region tL1/ν � 1 away from the critical point
we obtained for the Binder’s cumulant ratio the expression

B = 1− 1
3

(
1 +

2
n

)
, (4.3)

with finite size correction falling off in a power law. The
above result corresponds to a n-dimensional Gaussian dis-
tribution for n independent components of the vector vari-
able. Obviously, all the values lie in the interval from B = 0
(Ising model, n = 1) to B = 2/3 (spherical model, n =∞).

For the susceptibility, when tL1/ν � 1, one has (see
Eq. (3.34))

χ=χ∞

[
1−εn+2

n+8
S4

y
bL2−σ

(
C4, σ−22

y−2− y
σ/2

4S4

σ+2
sinπσ/2

)]
·

(4.4)

One observes that in this regime the susceptibility ap-
proaches its bulk value not in an exponential-in-L, as it
is usually believed to be the case for systems with short-
range critical exponents, but in a power-in-L way. The
last goes beyond the standard formulation of the finite-
size scaling, but is completely consistent with the intrin-
sic large-distance power-law behavior of the correlations
in systems with long-range interactions (see, e.g. [35] and
references cited therein).

Since η = O(ε2) in O(n) short-range models, we were
unable to verify the predicted dependence of the scaling
functions on η, which requires calculations up to second
order of ε, while we have retained only corrections up to
the first order in ε. We hope to return to this problem in
the future.
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and N.S. Tonchev for the critical reading of the manuscript.
H. Chamati acknowledges the hospitality at the International
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Appendix A: Construction of the effective
Hamiltonian

Let us start with the bare Hamiltonian (2.1)

H{ϕ}=
1
2

∫
V

ddx
[
(∇ϕ)2+b

(
∇σ/2ϕ

)2

+r0ϕ2+
1
2
u0ϕ

4

]
,

(A1)

where the spatial integration is over a system of linear
extent L in each of its d dimensions. The partition function
is given by

Z =
∫
Dϕ exp(−H). (A2)

Following reference [32], we spilt the field

ϕ(x) = φ+Σ (A3)

into a mode independent part φ, which defines the mag-
netization, and a part depending on the nonzero modes
Σ = L−d

∑
q 6=0 ϕ(q) exp (iq · x). For further calculation

we introduce the auxiliary Hamiltonian

H0 {φ} = Ld
[

1
2
r0φ

2 +
1
4
u0φ

4

]
. (A4)

and we treat the rest of the Hamiltonian by using pertur-
bation theory. Within this approximation the partition
function reads

Z =
∫
Dφ exp

(
−H0(φ)−

0

Γ (φ)
)
, (A5)

where

0

Γ = − ln
∫
DΣ exp(−H(φ,Σ) +H0(φ)). (A6)

Writing the difference between the bare Hamiltonian (A1)
and the auxiliary Hamiltonian (A4) in the form

H{φ,Σ} −H0 {φ} =
1
2

∫
V

ddx
[(
r0 + 3u0φ

2
)
Σ2 + (∇Σ)2 + b

(
∇σ/2Σ

)2
]

(A7a)

+
1
2
u0

∫
V

ddx
[
2φΣ3 +

1
2
Σ4

]
(A7b)

keeping in mind that the additional term involving∫
V ddxΣ vanishes one gets, after some straightforward cal-

culations, including the evaluation of the integrals over the
field Σ,

0

Γ (φ2)=
1
2

∑
q 6=0

ln[r0 +q2 + bqσ] +
1
2

(n+ 2)u0φ
2LdS1(r0, L)

− 1
4

(n+ 8)u2
0φ

4LdS2(r0, L) + · · · , (A8)
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where

Sm(r0, L) = L−d
∑
q 6=0

1
(r0 + q2 + bqσ)m

, (A9)

and the dots represent terms with higher order in φ.
Substituting expression (A9) into that of the partition

function (A5), we end up with the final expression for the
effective Hamiltonian

Heff. =
1
2
Ld
[
Rφ2 +

1
2
Uφ4

]
, (A10)

where the effective coupling constants are given by

R = r0 + (n+ 2)u0L
−d
∑
q 6=0

1
r0 + q2 + b|q|σ , (A11a)

U = u0 − (n+ 8)u2
0L
−d
∑
q 6=0

1

(r0 + q2 + b|q|σ)2 · (A11b)

These are the finite-size corrections to the bulk coupling
constants r0 and u0, which are necessary for the evaluation
of various thermodynamic quantities.

Appendix B: Finite-size scaling behavior
of the even moments of the order parameter

By definition the 2pth moment of the order parameter of
an O(n) model is given by

〈M2p〉n =

∫∞
0 dΦΦ2pe−

1
2L

d[RΦ2+ 1
2UΦ

4]∫∞
0 dΦe−

1
2L

d[RΦ2+ 1
2UΦ

4]
· (B1)

Changing the variable of integration to ϕ = (ULd)1/4Φ

and by introducing the scaling variable z = RLd/2/
√
U

the above expression can be rewritten in the form

〈M2p〉n =
(
ULd

)− p2 ∫∞0 dϕϕ2p+n−1e−
1
2 zϕ

2− 1
4ϕ

4∫∞
0

dϕϕn−1e−
1
2 zϕ

2− 1
4ϕ

4 · (B2)

Using the identity [36]∫ ∞
0

xν−1e−βx
2−γxdx =

(2β)−ν/2Γ (ν) exp
(
γ2

8β

)
D−ν

(
γ√
2β

)
, (B3)

where Dp(z) are the parabolic cylinder functions, the
above expression can be rewritten in a very simple form

〈M2p〉n =
(
ULd/2

)− p2 Γ [p+ n/2]
Γ [n/2]

D−p−n/2(z/
√

2)

D−n/2(z/
√

2)
·

(B4)

Using now the asymptotics of Dp(z) [36] it is straight-
forward to obtain the asymptotic behavior of the above
moments for i) z � 1 and ii) z � 1.

i) z � 1. Then one has

〈M2p〉n =
(
ULd/4

)− p2 Γ [p+ n/2]
Γ [n/2]

z−p

×
[
1− p(n+ p+ 1)

z2
+O

(
1
z4

)]
· (B5)

ii) z � 1. For this case the corresponding result is

〈M2p〉n =
(
ULd

4

)−p2 Γ [p2 + n
4 ]

Γ [n4 ]

×
[
1 + z

(
Γ [1

2 + n
4 ]

Γ [n4 ]
−
Γ [p2 + n

4 + 1
2 ]

Γ [n4 + p
2 ]

)
+z2

(
Γ [1

2 + n
4 ]

Γ [n4 ]

(
Γ [1

2 + n
4 ]

Γ [n4 ]
−

Γ [1 + n
4 ]

2Γ [n4 + 1
2 ]

−
Γ [1

2 + n
4 + p

2 ]
Γ [n4 + p

2 ]

)
+
Γ [1 + n

4 + p
2 ]

2Γ [n4 + p
2 ]

)
+O(z3)

]
.

(B6)

For the susceptibility (p = 1) the above expression can be
written in the following very simple form

〈M2〉n = an + zbn + z2cn +O(z3), (B7)

where an = Γ (n4 + 1
2 )/Γ (n4 ), bn = a2

n − n
4 , cn = an(bn +

1/4).
From (B5) it follows that the asymptotic behavior of

the Binder cumulant is

Bn(z) = 1− 1
3

(
1 +

2
n

)[
1− 2

z2
+O

(
1
z4

)]
, (B8)

wherefrom one has Bn(∞) = 2
3 (1− 1/n).

Appendix C: Finite-size results
for the physically important
case: d + σ = 6

In this Appendix we will report some results for the impor-
tant case d+σ = 6, which models the van der Waals type
potential. Note that because of the condition d + σ = 6
one now has only one independent variable, i.e. setting
d = 4 − ε directly leads to σ = 2 + ε. If one performs
now ε-expansion on the σ-dependent terms one will in
fact change the spectrum of the system from such one,
where qσ = q2+ε is considered as a perturbation to the
short-range contribution (proportional to q2), to one in
which qσ is replaced by q2 + εq2 ln q, i.e. where the long-
range portion of the interaction will represent already a
leading-order term. This is not the type of systems we are
interested in. Therefore, in order to avoid this problem, in
all the calculations below we perform ε-expansion only on
the d-dependent terms and retain the full ε-dependence
in all terms where it is stemming from the σ-dependence
of the quantities involved. Following this way of acting we
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obtain that in the case d + σ = 6 the expression (3.21)
for R transforms into

RL2 = y

(
1 +

ε

2
n+ 2
n+ 8

ln y
)
− εn+ 2

n+ 8
bL−εy(ln y − 2 lnL)

+ε
n+ 2
n+ 8

S4

[
I0
scaling (y, 4)− bL−ε

(
1 + y

∂

∂y

)
×I

ε
2
scaling (y, 4)

]
, (C1)

showing that there is an additional lnL correction to the
finite-size scaling theory. Definitely, keeping the terms pro-
portional to L−ε one goes beyond the precision kept in the
remaining part of the above equation. In accordance with
the remarks made above note that wile one does not per-
form an expansion of L−ε in terms of ε all the terms in
(C1) proportional to L−ε are simply corrections to scaling.
But, once one performs that expansion, because of the lnL
proportionality, these terms produce a leading-order con-
tribution, which is quite unphysical. We believe that this
is an artifact of the ε expansion. Such a procedure (keep-
ing the full ε-dependence in some expressions) has been
used in reference [37] in the analysis of the scaling prop-
erties of quantum systems at low temperatures. We hope
that the above problems can be removed by performing,
e.g., a field theoretical method based on minimal renor-
malization at fixed space dimensionality [14,38]. This is
out of the scope of the current article.

For the coupling constant U , instead of (3.23) one
obtains

ULε =
ε

n+ 8
S4

[
1 +

ε

2
(1 + ln y)

]
− ε2

n+ 8
bL−εS4 [ln y − 2 lnL]

+
ε2

n+ 8
S2

4

[
∂

∂y
I0
scaling (y, 4)

−bL−ε
(

2
∂

∂y
+

∂2

∂y2

)
I
ε
2
scaling (y, 4)

]
. (C2)

In this limit an additional lnL correction shows up. This
expression is finite in the limit y = 0. At the critical point
it transforms into

ULε =
ε

n+ 8
S4

[
1 +

ε

2
C
]

− ε2

n+ 8
bS4

[
1
2
C − 2 lnL− 1

]
− 5

2
ε2

n+ 8
bL−εζ(3). (C3)

The explicit appearance of lnL will affect the result of the
susceptibility, which will depend upon an additional lnL
at the critical point T = Tc.

At the fixed point, for the ‘characteristic’ variable z,
we obtain

z∗(y) ≡ RL2

√
ULε

∣∣∣∣
fixedpoint

=
√
n+ 8
εS4

{
y − y ε

4

(
1− n− 4

n+ 8
ln y
)

+εbL−ε
n+ 2
n+ 8

y +
1
2
εbL−ε

4− n
n+ 8

y(ln y − 2 lnL)

+
n+ 2
n+ 8

εS4

[
I0
scaling (y, 4)

− bL−ε
(

1 + y
∂

∂y

)
I
ε
2
scaling (y, 4)

]
−1

2
εS4y

[
∂

∂y
I0
scaling (y, 4)

− bL−ε
(

2
∂

∂y
+

∂2

∂y2

)]
I
ε
2
scaling (y, 4)

}
, (C4)

A comparison between (3.28) obtained for the case
d+σ < 6 and (C4) shows that an additional lnL appears
in the expression of the variable z(y), however this does
not alter the result (3.29) for z∗(0), i.e. z(y) evaluated at
the critical point T = Tc. In this case the term propor-
tional to lnL vanishes as we take the limit y → 0. The
result (C4) shows, in this way, that the Binder Cumulant
at the critical point does not depend on lnL.

Far away from criticality the susceptibility (3.34)
found for the case d+ σ < 6 turns into

χ = χ∞

[
1 + εb

n+ 2
n+ 8

S−1
4

(
lnχ∞ + 5εS4ζ(3)y−3

)]
.

(C5)

for the case d + σ = 6. Remark that the susceptibility
conserves the same features as that of the case discussed
in the body of the paper.
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